Dopamine D4 receptor-knock-out mice exhibit reduced exploration of novel stimuli.

نویسندگان

  • S C Dulawa
  • D K Grandy
  • M J Low
  • M P Paulus
  • M A Geyer
چکیده

The involvement of dopamine neurotransmission in behavioral responses to novelty is suggested by reports that reward is related to increased dopamine activity, that dopamine modulates exploratory behavior in animals, and that Parkinson's disease patients report diminished responses to novelty. Some studies have reported that polymorphisms of the human dopamine D4 receptor (D4R) gene are associated with personality inventory measures of the trait called "novelty-seeking". To explore a potential role for the D4R in behavioral responses to novelty, we evaluated D4R-knock-out (D4R-/-) and wild-type (D4R+/+) mice in three approach-avoidance paradigms: the open field, emergence, and novel object tests. These three paradigms differ in the degree to which they elicit approach, or exploratory behavior, and avoidance, or anxiety-related behavior. Thus, we used these three tests to determine whether the D4R primarily influences the exploratory or the anxious component of responses to approach-avoidance conflicts. D4R-/- mice were significantly less behaviorally responsive to novelty than D4R+/+ mice in all three tests. The largest phenotypic differences were observed in the novel object test, which maximizes approach behavior, and the smallest phenotypic differences were found in the open field test, which maximizes avoidance behavior. Hence, D4R-/- mice exhibit reductions in behavioral responses to novelty, reflecting a decrease in novelty-related exploration.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulation of Akt signaling by D2 and D3 dopamine receptors in vivo.

The serine/threonine kinase Akt is a downstream target of dopamine receptor signaling that is inhibited/dephosphorylated in response to direct and indirect dopamine receptor agonists. Although pharmacological studies uncovered the involvement of D2-class dopamine receptors in Akt regulation, they did not identify the role of individual receptor subtypes in this process. Here we used knock-out m...

متن کامل

The dopamine D2, but not D3 or D4, receptor subtype is essential for the disruption of prepulse inhibition produced by amphetamine in mice.

Brain dopamine (DA) systems are involved in the modulation of the sensorimotor gating phenomenon known as prepulse inhibition (PPI). The class of D2-like receptors, including the D2, D3, and D4 receptor subtypes, have all been implicated in the control of PPI via studies of DA agonists and antagonists in rats. Nevertheless, the functional relevance of each receptor subtype remains unclear becau...

متن کامل

Dysfunctional light-evoked regulation of cAMP in photoreceptors and abnormal retinal adaptation in mice lacking dopamine D4 receptors.

Dopamine is a retinal neuromodulator that has been implicated in many aspects of retinal physiology. Photoreceptor cells express dopamine D4 receptors that regulate cAMP metabolism. To assess the effects of dopamine on photoreceptor physiology, we examined the morphology, electrophysiology, and regulation of cAMP metabolism in mice with targeted disruption of the dopamine D4 receptor gene. Phot...

متن کامل

RO-10-5824 is a selective dopamine D4 receptor agonist that increases novel object exploration in C57 mice.

Novelty seeking as a behavioral phenomenon emerges as a compromise between approach and avoidance behavior. Although novelty seeking is thought to play a role in drug abuse and in cognition, the biological basis for this construct is poorly understood. At a genetic level, dopamine D4 receptors (D4R) appear to be critical for the behavioral expression of novelty seeking. In humans, polymorphisms...

متن کامل

Initial elevations in glutamate and dopamine neurotransmission decline with age, as does exploratory behavior, in LRRK2 G2019S knock-in mice

LRRK2 mutations produce end-stage Parkinson's disease (PD) with reduced nigrostriatal dopamine, whereas, asymptomatic carriers have increased dopamine turnover and altered brain connectivity. LRRK2 pathophysiology remains unclear, but reduced dopamine and mitochondrial abnormalities occur in aged G2019S mutant knock-in (GKI) mice. Conversely, cultured GKI neurons exhibit increased synaptic tran...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 19 21  شماره 

صفحات  -

تاریخ انتشار 1999